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Abstract
Objective  Successful application of deep machine learning could reduce time-consuming and labor-intensive clinical work 
of calculating the amount of radiographic bone loss (RBL) in diagnosing and treatment planning for periodontitis. This study 
aimed to test the accuracy of RBL classification by machine learning.
Materials and methods  A total of 236 patients with standardized full mouth radiographs were included. Each tooth from 
the periapical films was evaluated by three calibrated periodontists for categorization of RBL and radiographic defect mor-
phology. Each image was pre-processed and augmented to ensure proper data balancing without data pollution, then a novel 
multitasking InceptionV3 model was applied.
Results  The model demonstrated an average accuracy of 0.87 ± 0.01 in the categorization of mild (< 15%) or severe (≥ 15%) 
bone loss with fivefold cross-validation. Sensitivity, specificity, positive predictive, and negative predictive values of the 
model were 0.86 ± 0.03, 0.88 ± 0.03, 0.88 ± 0.03, and 0.86 ± 0.02, respectively.
Conclusions  Application of deep machine learning for the detection of alveolar bone loss yielded promising results in this 
study. Additional data would be beneficial to enhance model construction and enable better machine learning performance 
for clinical implementation.
Clinical relevance  Higher accuracy of radiographic bone loss classification by machine learning can be achieved with more 
clinical data and proper model construction for valuable clinical application.

Keywords  Periodontitis · Computer-assisted radiographic image interpretation · Artificial intelligence · Machine learning · 
Deep learning

Introduction

Periodontitis is one of the most common chronic inflamma-
tory disease affecting half of the adults in the USA [1, 2]. It 
is initiated by bacterial biofilm infection of the periodontal 
soft and hard tissues, including the gingiva, the cementum, 
the periodontal ligament, and the alveolar bone [3]. The host 
immune response is activated by the infection, leading to 
inflammation and clinical alteration of the periodontal tis-
sues, increased periodontal pocket probing depth, clinical 
attachment loss, bleeding on probing, and bone loss around 
teeth. Without early diagnosis and proper management, pro-
gressing alveolar bone loss from severe periodontitis is one 
of the major causes of tooth loss [4]. Periodontitis is linked 
with several systemic diseases that can negatively impact 
patients’ quality of lives, such as diabetes [5, 6], cardio-
vascular diseases [7, 8], respiratory diseases [9], adverse 
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pregnancy outcomes [10], and cognitive impairments [11], 
among others. The first step of treating periodontitis is a 
proper diagnosis. According to the 2017 World Workshop on 
Classification of Periodontal and Peri-Implant Diseases and 
Conditions [12], a periodontitis patient should present with 
at least two teeth with detectable non-adjacent interdental 
attachment loss or non-interdental attachment loss of ≥ 3 mm 
with pocketing of > 3 mm. To further classify periodontitis 
for proper treatment planning, disease severity, complexity, 
and progression must all be taken into consideration. Clas-
sifying periodontitis severity requires identifying the worst 
interdental clinical attachment loss, evidence of radiographic 
bone loss (RBL), and amount of tooth loss due to periodon-
titis. The severity of periodontitis, based on the amount of 
RBL, are defined as stage I (< 15%), stage II (15–33%), and 
stage III or IV (> 33%) of bone loss [13]. Stage III and IV 
can be further differentiated based on case complexity.

Calculating the percentage of RBL can be time-consum-
ing and labor-intensive since clinicians need to correctly 
identify the anatomic landmarks, including the cemento-
enamel junction (CEJ) to locate the physiologic healthy bone 
crest level, the base of the bone loss, and the root apex from 
the radiographs. In normal healthy status, the location of the 
physiologic bone crest level should be 1–2 mm apical to the 
CEJ. When there is bone loss, the location of the physiologic 
bone crest level will be estimated from the radiographs with 
the identification of the CEJ level [14]. RBL is then calcu-
lated according to the following formula [15] (Fig. 1):

Previous studies pointed out that even after careful cali-
brations, both intra- and inter-examiner reliabilities on den-
tal radiographic measurements have clinical limitations 
[16–18].

Deep machine learning is a developing branch of com-
putational algorithms designed to apply artificial intelli-
gence to solve problems by imitating human intelligence 
and learning from the environments [19]. With computer 
software and hardware advancements, machine learning 
has long been introduced outside of the healthcare industry 
for complex problem solving that were not possible before. 
Convolutional neural network (CNN) is a subdivision of 
machine learning that is most applicable for image analy-
ses [20]. It is essentially composed of a set of algorithms 
resembling the complicated neurons of the human brain. 
A CNN inputs a fixed size image and processes the input 
through different layers/neurons until reaching a targeted 

The percentage of bone loss = distance α ∕ distance β x 100

Distance α = physiologic bone crest level to existing bone level

Distance β = physiologic bone crest level to root apex (Fig. 1)

output [21]. For any image analysis, the constructed CNN 
first learns from the training dataset with human-labeled 
outputs until the model can best produce the objective out-
put on its own. Then, the performance of the CNN will 
be verified with the testing dataset to check the accuracy 
of the CNN. Recently, CNN has been applied to medical 
and dental images [22, 23], including image segmenta-
tion, disease detection, and classification. In dentistry, 
CNN have shown abilities to identify radiographic dental 
conditions such as dental caries and bone loss [24–26]. 
Studies applying machine learning on bone loss have been 
conducted in recent years [25–28]. However, most previ-
ous studies were done using panoramic X-rays, which is 
not the gold standard approach for radiographic diagnosis 
of periodontitis. Therefore, the objective of this study is 
to apply deep machine learning for classifying severity 
of RBL from periodontitis using periapical radiographs.

Materials and methods

Radiographic data collection

The study was approved by the Committee for Protection 
of Human Subjects of the University of Texas Health Sci-
ence Center at Houston (HSC-DB-19–0994). All methods 
performed were in accordance with the relevant guide-
lines and regulations of the school. Patients that visited 
the School of Dentistry for treatment signed informed con-
sent forms which explained the use of de-identified patient 

Fig. 1   Illustration of radiographic bone loss.  How to calculate the 
percentage of radiographic bone loss. The percentage of bone loss = 
physiologic bone crest level to existing bone level/ physiologic bone 
crest level to  root apex X100.  Color coding of dots: yellow is the 
location of the CEJ, blue is the physiologic bone crest level, green is 
the existing bone level, and red is the root apex
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data for research. Patients with electronic dental records 
from the school between 01/01/2010 and 12/31/2020 were 
screened. Only patients with full mouth standardized radi-
ographs from the school were included in the study. Each 
standardized radiograph was 503 dots per inch in size, 
meaning that each pixel of the standardized radiograph 
was equivalent to 0.05 mm. The standardized peri-apical 
radiographs were captured by bisecting or parallel tech-
niques using a standardized film holder with the distance 
between focal spot to position indicating device 9 or 12 
inches. The digital images were captured using either CCD 
or PSP sensor in size #1 or 2. Radiographs that were not in 
the standard format were excluded from the study.

Three 1-h calibration sessions were carried out to cali-
brate three board-certified periodontists before the start of 
the study. Each tooth from the collected periapical films was 
evaluated by the three calibrated periodontists to calculate the 
percentage of radiographic bone loss (RBL) and categorized, 
as healthy (no RBL), stage I (< 15%), stage II (15–33%), and 
stage III/ IV (> 33%) RBL, based on the criteria defined by the 
2017 classification of periodontitis [13]. Additionally, radio-
graphic defect morphology was classified as suprabony, intra-
bony, and severe intrabony (defects with greater than 3 mm 
of depth), as presented in Fig. 2. Teeth were excluded if the 
radiograph was lacking diagnostic quality: (1) improper angu-
lation causing severe elongation, foreshortening, or overlap-
ping of anatomic landmarks inhibiting RBL classification; or 
(2) anatomic landmarks not captured in the image, such as root 
apex of a tooth. Disagreements of radiographic categorization 
were resolved by group discussion to reach final consensus, 

which served as classification standards for deep machine 
learning analysis. The study process is illustrated in Fig. 3.

Data grouping for fivefold cross‑validation

To ensure validity of the constructed machine learning 
model, fivefold cross-validation was applied to confirm 
the performance of the machine learning. In brief, the col-
lected dataset was divided into 5 groups. For each fold, 
three groups were used as the training datasets (to train 
the parameters of the CNN), one group as the validation 
dataset (to select the trained CNN with the highest accu-
racy), and the remaining last group as the testing dataset 
(to evaluate the performance of the selected CNN). Such 
fivefold cross-validation could more objectively evaluate 
the accuracy of the constructed model [29]. Example of 
how fivefold cross-validation was incorporated for the pro-
ject is presented in step (2) of Fig. 4.

Data pollution was avoided by ensuring that the same subject 
was not used multiple times in different datasets when divid-
ing the collected data into 5 groups. In addition, the prevalence 
of the severe stage III/IV category RBL is not as common as 
patients with less severe categories of RBL in the collected 
radiographs, similar to findings from previous studies [25–28]. 
Only 10% of the images were in the most severe stage III/IV 
category with > 33% RBL. To compensate for such imbalance 
and avoid data pollution during the 5-group division process, 
the included subjects were randomly divided into five groups to 
ensure the number of stage III/IV teeth was a similar amount in 
each group. Similarly, healthy, stage I, and stage II images were 
randomly divided into these five groups.

Image pre‑processing and augmentation

Radiographic images were pre-processed before the appli-
cation of deep machine learning. First step of image pre-
processing was manual segmentation using an open access 
annotation tool, LabelMe [30]. Manual segmentation was 
done by drawing a polygon around the entire tooth and its 
adjacent interdental bone level. The smallest rectangle that 
could cover the polygon was used to crop each tooth from 
the radiographs. To focus on the interdental region of bone 
loss, the rectangles were shifted both left and right by 33% 
of its width before the images within the rectangles were 
cropped. Two images for each tooth were created after shift-
ing. Each segmented image was flipped, rotated ± 10°, and 
contrast-enhanced using contrast limited adaptive histogram 
equalization (CLAHE) to overcome data imbalance accord-
ing to methods described by Reza [31] with clipLimit of 2.0 
and tileGridSize of 8 × 8 pixels to obtain proper data aug-
mentation. The CLAHE limited the contrast amplification to 
reduce issues of noise amplification in near-constant regions 

Fig. 2   Intrabony defects were associated with more severe bone 
loss.  Intrabony defect is defined as the configuration of bone loss 
(solid yellow line) is not perpendicular to the long axis of the tooth 
(dotted blue line). The depth of the defect is measured from the bone 
crest level (dotted red line) to the base of bone loss. The current study 
noticed intrabony defects were associated with more severe bone loss 
compared to suprabony defects
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[32]. All images, from healthy to stage III/IV, were aug-
mented and randomly sampled so that the number of images 
within each category was equal to achieve data balancing.

Application of deep machine learning

InceptionV3 [33] was used to determine the severity of 
RBL. InceptionV3 was designed to reduce the computa-
tion cost of deep CNN using 1 × 1 convolution, and stacked 
1 × n with n × 1 convolutions. Multiple convolutions using 
different filter sizes were performed in a single layer to 
reduce the layers of the network. To achieve a more reli-
able diagnosis, a multitasking InceptionV3 model was 
developed to determine the defect morphology and RBL 
severity categories at the same time. All the cropped 
inter-dental images were in 8-bit grey level. The images 
were resized to 100 × 180 pixels before application of the 
multitasking InceptionV3 model. The multitasking Incep-
tionV3 model, performed using Keras 2.3.0 on a Windows 
10 computer and a Nvidia 2080TI graphic card, had a ran-
dom initialized weights with the last fully connected layer 
deleted. The deleted layer was replaced by a Global Max 
Pooling layer, a 1024-node fully connected layer with the 
rectified linear (ReLU) activation function. The outputs 
of ReLU were linked to two parallel fully connected lay-
ers, one for RBL severity and the other for radiographic 

defect morphology classifications. RBL classification was 
performed by a two-node fully connected layer with the 
softmax activation function for mild (< 15%) or severe 
(≥ 15%) RBL. Defect morphology classification was per-
formed by an additional three-node fully connected layer 
with the softmax activation function for suprabony or 
intrabony defects. The total number of parameters for this 
multi-tasking model was 23,906,534, of which 23,872,102 
were trainable. To minimize the loss function of the cat-
egorical cross entropy, the RMSprop optimizer was used 
with a learning rate of 0.001 and a batch size of 64. After 
a series of experiments, the loss function of the multi-
tasking model was the weighted sum of the loss from the 
periodontal bone loss classification (weight 0.7) and the 
loss from the morphology classification (weight 0.15) 
that obtained the optimal performance. The overall model 
is depicted in Fig. 4. The primary outcome of the study 
was to evaluate the performance of machine learning on 
RBL, using final consensus results as the classification 
standards.

Statistical analyses

The confusion matrix, test accuracy, sensitivity, specificity, 
positive, and negative predictive values of the constructed 

Fig. 3   Study process.  Flowchart of the study process.  Step (1) Data 
Collection:  6,219 proximal surfaces from 1,832 periapical radio-
graphs of 236 patients were included in the study.  Step (2) Data 
grouping, image pre-processing and augmentation before CNNs 
application:  To ensure validity of the constructed machine learn-
ing model, 5-fold cross-validation was applied to confirm the  per-
formance of the machine learning.  Step (3) RBL classification out-

comes: Machine learning classified images into mild (healthy to stage 
I <15% of bone loss) and severe (Stage II and III ≥15% of bone loss) 
RBL, to overcome smaller sample size after data balancing.  Color 
coding of dots: yellow is the location of the CEJ, blue is the physi-
ologic bone crest level, green is the existing bone level, and red is the 
root apex. Notice in healthy situation, the existing bone level is the 
physiologic bone crest level
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multitasking InceptionV3 model against the classification 
standards were assessed. Additionally, the multitasking 
InceptionV3 model was evaluated against classification 
standards from periodontists as reference tests in true and 
false positive rates to analyze its receiver operating charac-
teristic. Chi-square was used to compare differences between 
fivefolds. Comparisons between mild and severe RBL were 
made using two-sample t tests. A 5% significance level was 
used for all tests.

Results

Overall, 2362 periapical radiographs of 236 patients were 
screened for the study. After excluding 22% of non-stand-
ardized X-rays or images without proper diagnostic quality 
(such as anatomic landmarks for RBL classifications were 
not captured in the image, or improper angulation causing 
severe elongation, foreshortening, or overlapping), 6219 

interproximal surfaces from 1836 X-rays were included and 
classified by the calibrated periodontists. Of which, 29.4%, 
9.5%, 32.8%, and 28.3% were respectively incisors, canines, 
premolars, and molars. Regarding radiographic bone loss, 
17.3% had none, 49.9% had < 15%, 22.8% had 15–33%, and 
10% had > 33% of bone loss, while 7.4% of the bone loss 
configuration were classified as intrabony. Additionally, 0% 
of healthy, 4.1% of stage I, 14.9% of stage II, and 31.9% of 
stage III/IV were classified as intrabony defects, indicating 
that such defect was associated with more severe bone less. 
Data augmentation yielded 300,800 images for multitask-
ing InceptionV3 model training and testing. Occurrence 
frequency of different tooth numbers, RBL, and bone loss 
configuration classifications are reported in Table 1.

Ability of deep machine learning on categorizing 
severity of radiographic bone loss

Tables 2 and 3 summarize the results of multitasking Incep-
tionV3 to categorize RBL into either mild or severe groups 
with fivefold cross-validation. The accuracy of deep machine 
learning application in different folds ranged from 0.86 to 
0.88 (mean 0.87 ± 0.01). Accuracy of fold 1 was 0.87, fold 
2 was 0.86, fold 3 was 0.88, fold 4 was 0.87, and fold 5 
was 0.86. The mean accuracy of the model in the mild RBL 
group was 0.88 ± 0.03 and 0.86 ± 0.03 in the severe RBL 
group. No significant difference in accuracy was found in 
between two groups (p = 0.20). The mean test sensitivity 
of machine learning on RBL was 0.86 ± 0.03 across five-
folds, mean test specificity was 0.88 ± 0.03, mean positive 
predictive value was 0.88 ± 0.03, and the mean negative 
predictive value was 0.86 ± 0.02 (Table 3). Figure 5 illus-
trates the receiver operating characteristic (ROC) curves of 
the constructed multitasking InceptionV3 model, which the 
model was evaluated against classification standards as ref-
erence tests in true and false positive rates. The area under 
ROC curve across fivefolds was ranged 0.90–0.94 (mean 
0.92 ± 0.02).

Discussion

Based on the 2017 World Workshop on Classification of 
Periodontal and Peri-Implant Diseases and Conditions, 
diagnosing severity of periodontitis depends on clinical 
examination of attachment loss, calculation of number of 
tooth loss due to the disease, and evidence of radiographic 
bone loss [12]. The criteria of radiographic bone loss over 
at least two non-adjacent teeth to diagnose periodontitis are 
particularly important since clinical attachment level can be 
biased by clinician skills and other local factors [34]. Previ-
ous studies reported even with strong efforts in calibrations 

Fig. 4   The multi-tasking CNN model.  (100, 180, 1) represents that 
each input image was 100X180 pixels in grey scale. (4, 4, 2048) rep-
resents that each image was 4X4 with 2048 channels. (2048), (1024), 
and (3) represent the dimension of the data outputs
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Table 1   Demographic summary 
of the collected data Number of subjects 236

Number of radiographs 1832
Number of measurement locations 6219
Tooth type classifications
Incisors 1826 (29.4%)
Canines 590 (9.5%)
Premolars 2041 (32.8%)
Molars 1762 (28.3%)
RBL classifications
Healthy 1075 (17.3%)
Stage I (< 15%) 3105 (49.9%)
Stage II (15–33%) 1418 (22.8%)
Stage III/IV (> 33%) 621 (10.0%)
Configuration of bone loss (of the 5144 interproximal areas with bone loss)
Suprabony 4763 (76.6%)
Intrabony 381 (7.4%)

Within the 381 bone loss defects, 69 of them 
had an intrabony component greater than 
3 mm

Table 2   Performance of multitasking InceptionV3 model versus 
agreements between three calibrated board-certified periodontists on 
categorizing severity of radiographic bone loss. Accuracy of fivefold 
cross-validation applying deep machine learning multitasking Incep-
tionV3 model to categorize mild or severe periodontal radiographic 

bone loss. The accuracy of deep machine learning applications in dif-
ferent folds within the testing data ranged 0.86–0.88 (0.87 ± 0.01). 
Mean accuracy of the model in the mild RBL group was 0.88 ± 0.03 
and 0.86 ± 0.03 in the severe RBL group. No significant difference in 
accuracy was found in between two groups (p = 0.20)

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Accuracy

(Mean±SD)

Validation 

data

0.88 0.88 0.87 0.88 0.86 0.87±0.01

Testing 

data

0.87 0.86 0.88 0.87 0.86 0.87±0.01

Mild 

group

0.90 0.90 0.90 0.89 0.82 0.88±0.03

Severe 

group

0.85 0.82 0.87 0.84 0.90 0.86±0.03

Confusion 

matrix
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of experienced clinicians; there would still be disagreements 
on periodontal RBL between and within examiners [17, 35, 
36].

The successful application of CNN on classifying the 
severity of radiographic bone loss could be developed into a 
commercially available software to help reducing the clinical 
workload of precise anatomic landmark identifications and 
percentage of bone loss calculations for every single patient 
in daily clinical practice. Additional benefits of the applica-
tion are that it can (1) avoid the problem of low agreement of 
novice dentists and serve as a learning aid for dental students 
in periodontal diagnosis; (2) save time for hygienists and 
general dentists allowing them to focus on proper clinical 

treatments, including serving as a guidance for general den-
tists to determine periodontal disease severity, complexity, 
and proper timing of referral to a periodontal specialist; 
and (3) be useful for periodontists to assess radiographic 
bone level changes from disease progression, allowing more 
proactive case management, or treatment outcome, such as 
radiographic bone fill after surgical regenerative procedures. 
Several studies have attempted to apply convolutional neural 
networks (CNN) on similar tasks of classifying RBL binarily 
[25, 28, 29]. Krois et al. found that the accuracy of CNN 
was 0.81. The F1 score of DeNTNet by Kim et al. ranged 
0.66–0.75. Moran et al. used ResNet and Inception models 
that had 0.74 and 0.81 accuracy, respectively. Previous stud-
ies consistently reported limitations of (1) using panoramic 
radiographs, which inherit lower accuracy on RBL detec-
tion; and (2) the relatively small size of dataset. Similar to 
previous reports, only 10% of the collected images were in 
the most severe stage III/IV category with > 33% RBL. With 
such limitation, the current results primarily focused on clas-
sifying between mild and severe bone loss that had the most 
clinical relevance.

For periodontal purposes, the clinical gold standard is to 
calculate the amount of bone loss from a periapical radio-
graph. A periapical radiograph is the most reliable way to 
capture the entire tooth to the root apex with minimal distor-
tions. A prospective clinical study comparing the accuracy 
of conventional dental radiographs in assessment of peri-
odontal bone loss concluded that periapical radiographs are 
more accurate than panoramic films in detecting of osseous 
destruction, irrespective to the location of the tooth (max-
illary, mandibular, anterior, or posterior), and mesial or 
distal surfaces [37]. Compared to previous studies, one of 
the strengths of the current study is the inclusion of 6219 
interproximal surfaces from 1836 standardized periapical 
radiographs for analyses. The large amount and accurate 
nature of standardized periapical radiographs significantly 
enhance the reliability of the study results. Even though dif-
ferent articles had different designs of the algorithms and 

Table 3   Test sensitivity, 
specificity, positive, and 
negative predictive values of the 
multitasking InceptionV3 model

Sensitivity = true positive / (true positive + false negative)
Specificity = true negative / (true negative + false positive)
Positive predictive value = true positive / (true positive + false positive)
Negative predictive value = true negative / (true negative + false negative)
F1 score = mean of sensitivity and positive predictive value

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Accuracy
(Mean±SD)

Sensitivity 0.85 0.82 0.87 0.84 0.90 0.86±0.03
Specificity 0.90 0.90 0.90 0.89 0.82 0.88±0.03
Positive predictive value 0.89 0.89 0.90 0.88 0.84 0.88±0.03
Negative predictive value 0.86 0.83 0.87 0.85 0.89 0.86±0.02
F1 score 0.87 0.86 0.89 0.86 0.87 0.87±0.01

Fig. 5   Receiver operating characteristic (ROC) curves of the mul-
titasking Inception V3 model.  The multitasking InceptionV3 model 
was evaluated against classification standards from periodontists as 
reference  tests in true and false positive rates.  The five color coded 
curves represent five folds of the analyses



	 Clinical Oral Investigations

1 3

clinical data collection, direct comparison may not be fea-
sible. The 0.87 average accuracy of the present study was 
higher than previously reported, indicating that the current 
results are more readily available to be translated for clini-
cal application. Future study will attempt to apply machine 
learning models on non-standardized radiographs from mul-
tiple clinical settings.

Besides the larger sample size and more accurate radio-
graphic resource, another possible reason for higher accu-
racy of the constructed model from our current study was 
the application of InceptionV3 model [33]. InceptionV3 is 
a CNN model that instead of stacking the layers, the model 
orders the layers to operate on the same level to increase 
efficiency. It has been reported to have superior performance 
in image classification in the medical field [24]. In addition, 
the current study found that intrabony defects were highly 
associated with more severe bone loss during the study pro-
cess. Therefore, multitasking model factoring in both defect 
morphology and RBL category were adopted to enhance 
the accuracy of the present study. Fivefold cross-validation 
strengthens the results of the present study, indicating that 
the reported high accuracy did not happen by chance or 
human manipulation [29].

Although a multitasking model yielded better perfor-
mance, one of the limitations of the present study was that 
it focused on radiographic parameters used in the 2017 new 
classification for diagnosis of periodontitis. Incorporating 
other important factors determining the periodontal tooth 
prognosis and treatment plan, including detail information of 
intrabony defects (angle and walls of the defect), severity of 
furcation involvements, and presence of endodontic lesions, 
would be promising in enhancing performance of machine 
learning. However, the RBL classification standards were 
determined based on agreements from clinicians diagnosing 
using two-dimensional images. Such standards cannot avoid 
inherent limitations of the images and human errors. A more 
ideal gold standard on severity of bone loss, intrabony defect 
configuration, and severity of furcation defect might need to 
be obtained from three-dimensional cone beam computed 
tomography or surgical entry of the sites.

In conclusion, the current study yielded high accuracy 
in applying deep machine learning to categorize mild 
(0.88 ± 0.03) or severe (0.86 ± 0.03) periodontal bone 
loss without significant difference between mild or severe 
group (p = 0.20). Additionally, there were no statistically 
significant difference between fivefolds in test accuracy, 
sensitivity, specificity, positive and negative predictive 
values, F1 score, and area under receiver operating char-
acteristic curve (all p > 0.05), indicating that the results 
were validated rather than circumstantial occurrence. 
Future study should focus on data collection for better 
model construction and training, including larger dataset, 
more severe RBL cases, and incorporate other important 

diagnostic factors (angle and walls of intrabony defects, 
severity of furcation involvements, and presence of per-
iodontal-endodontic lesions) from more reliable surgical 
entry or cone beam computed tomography analyses, to 
enable clinical application of machine learning to assist 
clinical periodontal diagnosis and treatment planning on 
a daily basis.
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